Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNγ-Dependent Pathways
نویسندگان
چکیده
This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.
منابع مشابه
Cytokine Production in Hymenolepis Nana Infection
Background: Although many experimental studies provide convincing evidence that type II immunity is protective against helminths, recent data in mice demonstrate that Th1 is also impor-tant in some cestodes like Hymenolepis nana. Objective: To identify the role of Th1 and Th2 lymphocytes in immunity against H. nana, the levels of IL-12, IFNγ, IL-5, and IL-13 were de-termined in serum of humans ...
متن کاملHeat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways: TNF, unlike IL-12p40 secretion, is Toll-like receptor 2 dependent.
Cattle and humans are susceptible to infection with the Gram-negative intracellular bacterium Brucella abortus. Heat-killed B. abortus (HKBA) is a strong Th1 adjuvant and carrier. Previously, we have demonstrated that dendritic cells produce IL-12 in response to HKBA stimulation. In the present study, we use knockout mice and in vitro reconstitution assays to examine the contribution of signali...
متن کاملHost Susceptibility to Brucella abortus Infection Is More Pronounced in IFN-γ knockout than IL-12/β2-Microglobulin Double-Deficient Mice
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/β2-microglobulin (β2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be ...
متن کاملBrucella Omp25 Upregulates miR-155, miR-21-5p, and miR-23b to Inhibit Interleukin-12 Production via Modulation of Programmed Death-1 Signaling in Human Monocyte/Macrophages
Brucella spp. infection results in compromised Type1 (Th1) cellular immune response. Several reports have described an immunomodulatory function for Brucella major outer membrane protein Omp25. However, the mechanism by which Omp25 modulates macrophage dysfunction has not been defined. Herein, we reported that Omp25-deficient mutant of Brucella suis exhibited an enhanced ability to induce inter...
متن کاملCentral role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 K...
متن کامل